LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layer-Dependent Raman Spectroscopy and Electronic Applications of Wide-Bandgap 2D Semiconductor β-ZrNCl.

Photo from wikipedia

In recent years, 2D layered semiconductors have received much attention for their potential in next-generation electronics and optoelectronics. Wide-bandgap 2D semiconductors are especially important in the blue and ultraviolet wavelength… Click to show full abstract

In recent years, 2D layered semiconductors have received much attention for their potential in next-generation electronics and optoelectronics. Wide-bandgap 2D semiconductors are especially important in the blue and ultraviolet wavelength region, although there are very few 2D materials in this region. Here, monolayer β-type zirconium nitride chloride (β-ZrNCl) is isolated for the first time, which is an air-stable layered material with a bandgap of ≈3.0 eV in bulk. Systematical investigation of layer-dependent Raman scattering of ZrNCl from monolayer, bilayer, to bulk reveals a blueshift of its out-of-plane A1g peak at ≈189 cm-1 . Importantly, this A1g peak is absent in the monolayer, suggesting that it is a fingerprint to quickly identify the monolayer and for the thickness determination of 2D ZrNCl. The back gate field-effect transistor based on few-layer ZrNCl shows a high on/off ratio of 108 . These results suggest the potential of 2D β-ZrNCl for electronic applications.

Keywords: dependent raman; spectroscopy; layer dependent; wide bandgap; zrncl

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.