This work describes an enzymatic autocatalytic network capable of dynamic switching under out-of-equilibrium conditions. The network, wherein a molecular fuel (trypsinogen) and an inhibitor (soybean trypsin inhibitor) compete for a… Click to show full abstract
This work describes an enzymatic autocatalytic network capable of dynamic switching under out-of-equilibrium conditions. The network, wherein a molecular fuel (trypsinogen) and an inhibitor (soybean trypsin inhibitor) compete for a catalyst (trypsin), is kept from reaching equilibria using a continuous flow stirred tank reactor. A so-called 'linear inhibition sweep' is developed (i.e., a molecular analogue of linear sweep voltammetry) to intentionally perturb the competition between autocatalysis and inhibition, and used to demonstrate that a simple molecular system, comprising only three components, is already capable of a variety of essential neuromorphic behaviors (hysteresis, synchronization, resonance, and adaptation). This research provides the first steps in the development of a strategy that uses the principles in systems chemistry to transform chemical reaction networks into platforms capable of neural network computing.
               
Click one of the above tabs to view related content.