LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single Virus Detection on Silicon Photonic Crystal Random Cavities.

Photo from wikipedia

On-chip silicon microcavity sensors are advantageous for the detection of virus and biomolecules due to their compactness and the enhanced light-matter interaction with the analyte. While their theoretical sensitivity is… Click to show full abstract

On-chip silicon microcavity sensors are advantageous for the detection of virus and biomolecules due to their compactness and the enhanced light-matter interaction with the analyte. While their theoretical sensitivity is at the single-molecule level, the fabrication of high quality (Q) factor silicon cavities and their integration with optical couplers remain as major hurdles in applications such as single virus detection. Here, label-free single virus detection using silicon photonic crystal random cavities is proposed and demonstrated. The sensor chips consist of free-standing silicon photonic crystal waveguides and do not require pre-fabricated defect cavities or optical couplers. Residual fabrication disorder results in Anderson-localized cavity modes which are excited by a free space beam. The Q ≈105 is sufficient for observing discrete step-changes in resonance wavelength for the binding of single adenoviruses (≈50 nm radius). The authors' findings point to future applications of CMOS-compatible silicon sensor chips supporting Anderson-localized modes that have detection capabilities at the level of single nanoparticles and molecules.

Keywords: virus detection; silicon photonic; detection; single virus; silicon

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.