LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gaining Insight into the Electrochemical Interface Dynamics in an Organic Redox Flow Battery with a Kinetic Monte Carlo Approach.

Photo from wikipedia

Finding low-cost and nontoxic redox couples for organic redox flow batteries is challenging due to unrevealed reaction mechanisms and side reactions. In this study, a 3D kinetic Monte Carlo model… Click to show full abstract

Finding low-cost and nontoxic redox couples for organic redox flow batteries is challenging due to unrevealed reaction mechanisms and side reactions. In this study, a 3D kinetic Monte Carlo model to study the electrode-anolyte interface of a methyl viologen-based organic redox flow battery is presented. This model captures various electrode processes, such as ionic displacement and degradation of active materials. The workflow consists of input parameters obtained from density functional theory calculations, a kinetic Monte Carlo algorithm to simulate the discharging process, and an electric double layer model to account for the electric field distribution near the electrode surface. Galvanostatic discharge is simulated at different anolyte concentrations and input current densities, which demonstrate that the model captured the formation of the electrical double layer due to ionic transport. The simulated electrochemical kinetics (potential, charge density) are found to be in agreement with the Nernst equation and the obtained EDL structure corresponded with published molecular dynamics results. The model's flexibility allows further applications of simulating the behavior of different redox couples and makes it possible to consider other molecular-scale phenomena. This study paves the way for computational screening of active species by assessing their potential kinetics in electrochemical environments.

Keywords: redox flow; monte carlo; organic redox; redox; kinetic monte

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.