Amorphous MoS3 has been an attractive electrode material for sodium-ion batteries and lithium-sulfur batteries. However, the potassium storage capability of amorphous MoS3 remains unreported. Herein, the construction of hybrid hierarchical… Click to show full abstract
Amorphous MoS3 has been an attractive electrode material for sodium-ion batteries and lithium-sulfur batteries. However, the potassium storage capability of amorphous MoS3 remains unreported. Herein, the construction of hybrid hierarchical microspheres composed of amorphous MoS3 nanosheets dual-confined with TiO2 core, and nitrogen-doped carbon shell layer (denoted as TiO2 @A-MoS3 @NC) via a self-templating method, combined with a low-temperature sulfurization process as a new anode material for potassium-ion batteries (PIBs), is reported. Benefitting from the unique structural merits including unique 1D chain structure, disordered arrangement of atoms and a large number of defects of amorphous MoS3 , more active heterointerfacial sites, effectively mitigated volume change, good electrical contact, and easy K+ ion migration, the TiO2 @A-MoS3 @NC microspheres exhibit excellent potassium-storage performance with high specific capacity, superior rate capability, and cycling stability.
               
Click one of the above tabs to view related content.