LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Near-Field Radiative Heat Transfer between Graphene/hBN Systems.

Photo from wikipedia

Near-field radiative heat transfer (NFRHT) can exceed the blackbody radiation limit owing to the coupled evanescent waves, implying a significant potential for energy conversion and thermal management. Coupled surface plasmon… Click to show full abstract

Near-field radiative heat transfer (NFRHT) can exceed the blackbody radiation limit owing to the coupled evanescent waves, implying a significant potential for energy conversion and thermal management. Coupled surface plasmon polaritons (SPPs) and hyperbolic phonon polaritons (HPPs) with small ohmic losses enable a long propagation wavelength that is essential in NFRHT. However, so far, there still lacks knowledge about the experimental investigation of the coupling of SPPs and HPPs in terms of NFRHT. In this study, the NFRHT between graphene/hexagonal boron nitride (hBN) systems that can be readily transferred onto various substrates, with a gap space of ≈400 nm is measured. NFRHT enhancements in the order of three and six times higher than the blackbody limit for graphene/hBN heterostructures and graphene/hBN/graphene multilayers, respectively are demonstrated. In addition, the largest ever radiative heat flux using graphene/hBN/graphene multilayers under similar gap space of 400 nm is obtained. Consequently, analyzing the photon tunneling modes reveal that these phenomena are consequences of coupled SPPs of graphene and HPPs of hBN.

Keywords: graphene; graphene hbn; near field; field radiative; radiative heat

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.