LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Precisely Localized Bone Regeneration Mediated by Marine-Derived Microdroplets with Superior BMP-2 Binding Affinity.

Photo from wikipedia

Prompt and robust bone regeneration has been clinically achieved using supraphysiological doses of bone morphogenetic protein-2 (BMP-2) to overcome the short half-life and rapid clearance. However, uncontrolled burst release of… Click to show full abstract

Prompt and robust bone regeneration has been clinically achieved using supraphysiological doses of bone morphogenetic protein-2 (BMP-2) to overcome the short half-life and rapid clearance. However, uncontrolled burst release of exogenous BMP-2 causes severe complications such as heterotopic ossification and soft tissue inflammation. Therefore, numerous researches have focused on developing a new BMP-2 delivery system for a sustained release profile by immobilizing BMP-2 in various polymeric vehicles. Herein, to avoid denaturation of BMP-2 and enhance therapeutic action via localized delivery, a complex coacervate consisting of fucoidan, a marine-derived glycosaminoglycan, and poly-l-lysine (PLL) is fabricated. Superior BMP-2 binding ability and electrostatic interaction-driven engulfment enable facile and highly efficient microencapsulation of BMP-2. The microencapsulation ability of the coacervate significantly improves BMP-2 bioactivity and provides protection against antagonist and proteolysis, while allowing prolonged release. Moreover, BMP-2 containing coacervate is coated on conventional collagen sponges. The bioactivity and localized bone regenerating ability are confirmed through in vitro (human-derived stem cells), and in vivo (calvarial bone defect model) evaluations.

Keywords: superior bmp; bmp binding; bmp; bone; bone regeneration; marine derived

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.