LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoelectrochemical Performance Improving Mechanism: Hybridization Appearing at the Energy Band of BiVO4 Photoanode by Doped Quantum Layers Modification.

Photo from wikipedia

Surface passivation of the photoelectrode by wide bandgap semiconductor quantum layer is an important strategy to improve work stability and surface state inhibition. However, an inevitable energy barrier is generated… Click to show full abstract

Surface passivation of the photoelectrode by wide bandgap semiconductor quantum layer is an important strategy to improve work stability and surface state inhibition. However, an inevitable energy barrier is generated during the quantum tunneling process of the photocarriers. To overcome this shortage, a tandem photo-generated hole transfer route is fabricated on BiVO4 photoanode by doped dual-quantum layers modification, Ni-ZnO (5 nm) and Rh-SrTiO3 (≈10 nm). Modulated photoelectrochemical (PEC), Scanning Kelvin Probe (SKP), and DFT calculation method results indicate that a tandem hole ohmic contact route is formed in the photoanode to reduce the quantum tunneling energy barrier, meanwhile, the photon absorption capacity of BiVO4 is improved after doped quantum layers modification. Both a phenomenal attribute to the energy band hybridization between Ni, Rh 3d orbits in quantum layers with BiVO4 photoanode. Then, the modified BiVO4 photoanode achieves the recoded photocurrent density of 6.47 and 5.18 mA cm-2 (Na2 SO3 electrolyte, VRHE  = 1.23 V) under simulated sun light (100 mW cm-2 AM 1.5 G) by xenon lamp illumination without and with UV composition cutting down to ≈5%, respectively. Generally, this work will highlight a potential application in the fields of PEC water splitting and photovoltaic conversion for various semiconductor nanomaterials.

Keywords: energy; photoanode doped; quantum layers; layers modification; bivo4 photoanode

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.