LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting Oxygen Reduction for High-Efficiency H2 O2 Electrosynthesis on Oxygen-Coordinated CoNC Catalysts.

Photo by martindorsch from unsplash

Atomically dispersed CoNC is a promising material for H2 O2 selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN4 active center… Click to show full abstract

Atomically dispersed CoNC is a promising material for H2 O2 selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN4 active center is insufficient and needs to be improved further. This can be done by fine-tuning its atomic coordination configuration. Here, a single-atom electrocatalyst (Co/NC) is reported that comprises a specifically penta-coordinated CoNC configuration (OCoN2 C2 ) with Co center coordinated by two nitrogen atoms, two carbon atoms, and one oxygen atom. Using a combination of theoretical predictions and experiments, it is confirmed that the unique atomic structure slightly increases the charge state of the cobalt center. This optimizes the adsorption energy towards *OOH intermediate, and therefore favors the two-electron ORR relevant for H2 O2 electrosynthesis. In neutral solution, the as-synthesized Co/NC exhibits a selectivity of over 90% over a potential ranging from 0.36 to 0.8 V, with a turnover frequency value of 11.48 s-1 ; thus outperforming the state-of-the-art carbon-based catalysts.

Keywords: reduction high; boosting oxygen; oxygen reduction; oxygen; electrosynthesis

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.