LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modular Assembly of a Concatenated DNA Circuit for In Vivo Amplified Aptasensing.

Photo from wikipedia

Probing endogenous molecular profiles in living entities is of fundamental significance to decipher biological functions and exploit novel theranostics. Despite programmable nucleic acid-based aptasensing systems across the breadth of molecular… Click to show full abstract

Probing endogenous molecular profiles in living entities is of fundamental significance to decipher biological functions and exploit novel theranostics. Despite programmable nucleic acid-based aptasensing systems across the breadth of molecular imaging, an aptasensing system enabling in vivo imaging with high sensitivity, accuracy, and adaptability is highly required yet is still in its infancy. Artificial catalytic DNA circuits that can modularly integrate to generate multiple outputs from a single input in an isothermal autonomous manner, have supplemented powerful toolkits for intracellular biosensing research. Herein, a multilayer nonenzymatic catalytic DNA circuits-based aptasensing system is devised for in situ imaging of a bioactive molecule in living mice by assembling branched DNA copolymers with high-molecular-weight and high-signal-gain based on avalanche-mimicking hybridization chain reactions (HCRs). The HCRs aptasensing circuit performs as a general and powerful sensing platform for precise analysis of a series of bioactive molecules due to its inherent rich recognition repertoire and hierarchical reaction accelerations. With tumor-targeting capsule encapsulation, the HCRs aptasensing circuit is specifically delivered into tumor cells and allowed the high-contrast imaging of intracellular adenosine triphosphate in living mice, highlighting its potential for visualizing these clinically important biomolecules and for studying the associated physiological processes.

Keywords: concatenated dna; dna; assembly concatenated; circuit; dna circuit; modular assembly

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.