LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into Reversible Conversion Reactions in SnO2 -Based Anodes for Lithium Storage: A Review.

Photo from wikipedia

Various anode materials have been widely studied to pursue higher performance for next generation lithium ion batteries (LIBs). Metal oxides hold the promise for high energy density of LIBs through… Click to show full abstract

Various anode materials have been widely studied to pursue higher performance for next generation lithium ion batteries (LIBs). Metal oxides hold the promise for high energy density of LIBs through conversion reactions. Among these, tin dioxide (SnO2 ) has been typically investigated after the reversible lithium storage of tin-based oxides is reported by Idota and co-workers in 1997. Numerous in/ex situ studies suggest that SnO2 stores Li+ through a conversion reaction and an alloying reaction. The difficulty of reversible conversion between Li2 O and SnO2 is a great obstacle limiting the utilization of SnO2 with high theoretical capacity of 1494 mA h g-1 . Thus, enhancing the reversibility of the conversion reaction has become the research emphasis in recent years. Here, taking SnO2 as a typical representative, the recent progress is summarized and insight into the reverse conversion reaction is elaborated. Promoting Li2 O decomposition and maintaining high Sn/Li2 O interface density are two effective approaches, which also provide implications for designing other metal oxide anodes. In addition, some in/ex situ characterizations focusing on the conversion reaction are emphatically introduced. This review, from the viewpoint of material design and advanced characterizations, aims to provide a comprehensive understanding and shed light on the development of reversible metal oxide electrodes.

Keywords: reaction; conversion reactions; conversion; lithium storage; reversible conversion; conversion reaction

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.