LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene Quantum Dots Pinned on Nanosheets-Assembled NiCo-LDH Hollow Micro-Tunnels: Toward High-Performance Pouch-Type Supercapacitor via the Regulated Electron Localization.

Photo by korie from unsplash

A combined delicate micro-/nano-architecture and corresponding surface modification at the nanometer level can co-tailor the physicochemical properties to realize an advanced supercapacitor electrode material. Herein, nanosheets-assembled nickel-cobalt-layered double hydroxide (NiCo-LDH)… Click to show full abstract

A combined delicate micro-/nano-architecture and corresponding surface modification at the nanometer level can co-tailor the physicochemical properties to realize an advanced supercapacitor electrode material. Herein, nanosheets-assembled nickel-cobalt-layered double hydroxide (NiCo-LDH) hollow micro-tunnels strongly coupled with higher-Fermi-level graphene quantum dots (GQDs) are reported. The unique hollow structure endows the electrolyte accessible to more electroactive sites, while 2D nanosheets have excellent surface chemistry, which favors rapid ion/electron transfer, synergistically resulting in more super-capacitive activities. The experimental and density functional theory calculations recognize that such a precise decoration generally tunes the charge density distribution at the near-surface due to the Fermi-level difference of two components, thus regulating the electron localization, while decorating with conductive GQDs co-improves the charge mobility, affording superior capacitive response and electrode integrity. The as-acquired GQDs@LDH-2 electrode yields excellent capacitance reaching ≈1628 F g-1 at 1 A g-1 and durable cycling longevity (86.2% capacitive retention after 8000 cycles). When coupled with reduced graphene oxide-based negative electrode, the hybrid device unveils an impressive energy/power density (46 Wh kg-1 / 7440 W kg-1 ); moreover, a flexible pouch-type supercapacitor can be constructed based on this hybrid system, which holds high mechanical properties and stable energy and power output at various situations, showcasing superb application prospects.

Keywords: hollow; nanosheets assembled; ldh hollow; supercapacitor; electron; nico ldh

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.