LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles.

Photo by austindistel from unsplash

Liquid-liquid phase separation (LLPS) drives membraneless organelles (MLOs) formation for organizing biomolecules. Artificial MLOs (AMLOs) have been constructed mostly via the LLPS of engineered proteins capable of regulating limited types… Click to show full abstract

Liquid-liquid phase separation (LLPS) drives membraneless organelles (MLOs) formation for organizing biomolecules. Artificial MLOs (AMLOs) have been constructed mostly via the LLPS of engineered proteins capable of regulating limited types of biomolecules. Here, leveraging a minimalist AMLO, driven by LLPS of polymer-oligopeptide hybrids, enrichment, recruitment, and release of multifaceted cargoes are quantitatively shown, including small fluorescent molecules, fluorophore-containing macromolecules, proteins, DNAs, and RNAs. Cargoes show up to 105 -fold enrichment, whilst recruitment and release are triggered by variations of temperature, pH, and/or ionic strength. Also, the first efficacious, rapid, and reversible control of aggregation-induced emission with over 30 folds of modulation of overall fluorescence intensity is achieved, by intensifying the aggregation of luminogens in AMLO. The AMLO is a simple yet versatile platform for potential drug delivery and biosensor applications.

Keywords: membraneless organelles; recruitment release; cargo recruitment; recruitment; multifaceted cargo

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.