LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Ultralow Power Mixed Dimensional Heterojunction Transistor Based on the Charge Plasma pn Junction.

Photo by mbrunacr from unsplash

Development of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's… Click to show full abstract

Development of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS2 ) using the silicon substrate as the dopant medium is demonstrated. An ultralow-power current sourcing transistor or a gated WS2 pn diode is fabricated based on a charge plasma pn heterojunction formed between the WS2 thin-film and heavily doped bulk silicon. An ultralow switchable output current down to 0.01 nA µm-1 , an off-state current of ≈1 × 10-14 A µm-1 , a static power consumption range of  1 fW µm-1 -1 pW µm-1 , and an output current ratio of 103 at 0.1 V supply voltage are achieved. The charge plasma heterojunction allows a stable (less than 3% variation) output current regardless of the gate voltage once it is turned on.

Keywords: based charge; heterojunction; power; charge plasma; ultralow power

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.