LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles.

Photo by rabinam from unsplash

Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in… Click to show full abstract

Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.

Keywords: thermal sensitivity; sensitivity; thermoresponsive polymeric; nanolenses magnify; upconverting nanoparticles; polymeric nanolenses

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.