LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hollow Aluminum Hydroxide Modified Silica Nanoadjuvants with Amplified Immunotherapy Effects through Immunogenic Cell Death Induction and Antigen Release.

Photo from wikipedia

In spite of the widespread application of vaccine adjuvants in various preventive vaccines at present, the existing adjuvants are still hindered by weak cellular immunity responses in therapeutic cancer vaccines.… Click to show full abstract

In spite of the widespread application of vaccine adjuvants in various preventive vaccines at present, the existing adjuvants are still hindered by weak cellular immunity responses in therapeutic cancer vaccines. Herein, a hollow silica nanoadjuvant containing aluminum hydroxide spikes on the surface (SiAl) is synthesized for the co-loading of chemotherapeutic drug doxorubicin (Dox) and tumor fragment (TF) as tumor antigens (SiAl@Dox@TF). The obtained nanovaccines show significantly elevated anti-tumor immunity responses thanks to silica and aluminum-based composite nanoadjuvant-mediated tumor antigen release and Dox-induced immunogenic cell death (ICD). In addition, the highest frequencies of dendritic cells (DCs), CD4+ T cells, CD8+ T cells, and memory T cells as well as the best mice breast cancer (4T1) tumor growth inhibitory are also observed in SiAl@Dox@TF group, indicating favorable potential of SiAl nanoadjuvants for further applications. This work is believed to provide inspiration for the design of new-style nanoadjuvants and adjuvant-based cancer vaccines.

Keywords: cell death; aluminum; aluminum hydroxide; immunogenic cell; antigen release; tumor

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.