LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D-Printed Möbius Microring Lasers: Topology Engineering in Photonic Microstructures.

Photo by sarandywestfall_photo from unsplash

Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon… Click to show full abstract

Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon manipulation. However, the current studies mainly focus on planar structures, and the fabrication of photonic microstructures with specific topological geometric features still remains a great challenge. Extending the topological photonics to 3D microarchitectures is expected to enrich the photon manipulation capabilities and further advance the topological photonic devices. Here, a femtosecond laser direct writing technique is employed to fabricate 3D topological Möbius microring resonators from dye-doped polymer. The high-quality-factor Möbius microring resonator supports a unique spin-orbit coupled lasing at very low threshold. Due to the spin-orbit coupling induced geometric/Berry phase, the Möbius microrings, in striking contrast with ordinary microrings, output laser signals with all polarization states. The manipulation of miniaturized coherent light sources in the fabricated Möbius microrings represents a significant step forward toward 3D topological photonics that offers a novel design philosophy for functional photonic and optoelectronic devices.

Keywords: topology; photonics; printed bius; photonic microstructures; microring lasers; bius microring

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.