LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon Quantum Dot Modified Reduced Graphene Oxide Framework for Improved Alkali Metal Ion Storage Performance.

Photo from wikipedia

Organic materials with redox-active oxygen functional groups are of great interest as electrode materials for alkali-ion storage due to their earth-abundant constituents, structural tunability, and enhanced energy storage properties. Herein,… Click to show full abstract

Organic materials with redox-active oxygen functional groups are of great interest as electrode materials for alkali-ion storage due to their earth-abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one-pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li-, Na-, and K-ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali-ions and impressive reversible capacity (257 mAh g-1 at 50 mA g-1 ), rate capability (111 mAh g-1 at 1 A g-1 ), and cycling stability (79% retention after 10 000 cycles) with Li-ion. Furthermore, density functional theory calculations uncover the CQD structure-electrochemical reactivity trends for different alkali-ion. The results provide important insights into adopting CQD species for optimal alkali-ion storage.

Keywords: carbon; storage; graphene oxide; reduced graphene; ion storage; ion

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.