LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-Broadband Random Laser and White-Light Emissive Carbon Dots/Crystal In-Situ Hybrids.

Photo from wikipedia

The continuous white-light emission of carbon dots (CDs) can be applied to producing multicolor laser emissions by one single medium. Meanwhile, the solid-state emission greatly contributes to its practical application.… Click to show full abstract

The continuous white-light emission of carbon dots (CDs) can be applied to producing multicolor laser emissions by one single medium. Meanwhile, the solid-state emission greatly contributes to its practical application. In this work, a strategy to realize the in-situ hybridization of silane-functionalized CDs (SiCDs) and 1,3,5-benzenetricarboxylic acid trimethyl ester (Et3BTC) by a one-pot solvothermal method is reported. Significantly, the SiCDs/Et3BTC hybrid crystals exhibit ultra-broadband random laser emission over the near ultraviolet-visible region under 265 nm nanosecond pulsed laser excitation. The wavelength region of laser emission is achieved from 315 to 600 nm within an emission band of CDs-based materials. It is worth noting that the wavelength range of the laser is wider than the previously reported works. It is proposed that the continuous white-light emission of SiCDs caused by multiple fluorescence centers mainly gives rise to the broadband random laser emission. Moreover, the crystals are conducive to forming resonance and realizing solid-state laser emission. This in-situ method is expected to enable a more convenient, cheaper, and greener approach to prepare luminescent hybrids for application in multicolor laser displays, multi-level laser anti-counterfeiting, supercontinuum light sources, and so on.

Keywords: laser; random laser; emission; white light; broadband random

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.