LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of the Lotus Effect on Solid Surfaces by Machine Learning.

Photo from wikipedia

Superhydrophobic surfaces with the "lotus effect" have wide applications in daily life and industry, such as self-cleaning, anti-freezing, and anti-corrosion. However, it is difficult to reliably predict whether a designed… Click to show full abstract

Superhydrophobic surfaces with the "lotus effect" have wide applications in daily life and industry, such as self-cleaning, anti-freezing, and anti-corrosion. However, it is difficult to reliably predict whether a designed superhydrophobic surface has the "lotus effect" by traditional theoretical models due to complex surface topographies. Here, a reliable machine learning (ML) model to accurately predict the "lotus effect" of solid surfaces by designing a set of descriptors about nano-scale roughness and micro-scale topographies in addition to the surface hydrophobic modification is demonstrated. Geometrical and mathematical descriptors combined with gray level cooccurrence matrices (GLCM) offer a feasible solution to the puzzle of accurate descriptions of complex topographies. Furthermore, the "black box" is opened by feature importance and Shapley-additive-explanations (SHAP) analysis to extract waterdrop adhesion trends on superhydrophobic surfaces. The accurate prediction on as-fabricated superhydrophobic surfaces strongly affirms the extensionality of the ML model. This approach can be easily generalized to screen solid surfaces with other properties.

Keywords: effect solid; effect; solid surfaces; lotus effect; machine learning

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.