LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency.

Photo from wikipedia

Wide-bandgap perovskite solar cells (PSCs) with an optimal bandgap between 1.7 and 1.8 eV are critical to realize highly efficient and cost-competitive silicon tandem solar cells (TSCs). However, such wide-bandgap PSCs… Click to show full abstract

Wide-bandgap perovskite solar cells (PSCs) with an optimal bandgap between 1.7 and 1.8 eV are critical to realize highly efficient and cost-competitive silicon tandem solar cells (TSCs). However, such wide-bandgap PSCs easily suffer from phase segregation, leading to performance degradation under operation. Here, it is evident that ammonium diethyldithiocarbamate (ADDC) can reduce the detrimental I2 back to I- in precursor solution, thereby reducing the density of deep level traps in perovskite films. The resultant perovskite film exhibits great phase stability under continuous illumination and 30-60% relative humidity conditions. Due to the suppression of defect proliferation and ion migration, the PSCs deliver great operation stability which retain over 90% of the initial power conversion efficiency (PCE) after 500 h maximum power point tracking. Finally, a highly efficient semitransparent PSC with a tailored bandgap of 1.77 eV, achieving a PCE approaching 18.6% with a groundbreaking open-circuit voltage (VOC ) of 1.24 V enabled by ADDC additive in perovskite films is demonstrated. Integrated with a bottom silicon solar cell, a four-terminal (4T) TSC with a PCE of 30.24% is achieved, which is one of the highest efficiencies in 4T perovskite/silicon TSCs.

Keywords: silicon tandem; bandgap; solar cells; tandem solar; wide bandgap

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.