LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of Structural Order in the Mechanism of Charge Transport across Tunnel Junctions with Various Iron-Storing Proteins.

Photo from wikipedia

In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide… Click to show full abstract

In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions.

Keywords: structural order; role structural; role; iron; tunnel junctions

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.