LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Powered Lithium Niobate Thin-Film Photodetectors.

Photo from wikipedia

Thin-film lithium niobate platform, namely lithium-niobate-on-insulator (LNOI), brings new opportunities for integrated photonics, taking advantages from both outstanding crystalline properties and special structural features. The excellent properties of LNOI have… Click to show full abstract

Thin-film lithium niobate platform, namely lithium-niobate-on-insulator (LNOI), brings new opportunities for integrated photonics, taking advantages from both outstanding crystalline properties and special structural features. The excellent properties of LNOI have triggered development of a variety of on-chip photonic devices for light generation and manipulation. However, as an indispensable component for photonic circuit with full functionalities, the thin-film photodetector lacks in portfolios of LNOI-based devices due to standing obstacles of low electrical conductivity and poor photoelectric conversion ability. Here, a self-powered broadband LNOI photodetector based on enhanced photovoltaic effect, benefitting from encapsulated plasmonic nanoparticles and doped silver ions, is reported. Maximum responsivity of 0.25 A W-1 and detectivity (1.56 × 1014 Jones) are achieved. First-principle calculations and electric-field simulation reveal intrinsic mechanisms and crucial roles of plasmonic nanoparticles and silver ions on photocurrent generation and collection. This work opens an avenue to develop high-performance on-chip LNOI photodetectors, offering a conceivable means toward multiple-functional photonic circuits.

Keywords: powered lithium; thin film; self powered; lithium niobate

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.