LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nature-Inspired High Temperature Scale-Resistant Slippery Lubricant-Induced Porous Surfaces (HTS-SLIPS).

Photo from wikipedia

Scale formation is a longstanding and unresolved problem in a number of fields, including power production, petroleum exploration, thermal desalination, and construction. Herein, a high-temperature scale-resistant slippery lubricant-induced surface (HTS-SLIPS)… Click to show full abstract

Scale formation is a longstanding and unresolved problem in a number of fields, including power production, petroleum exploration, thermal desalination, and construction. Herein, a high-temperature scale-resistant slippery lubricant-induced surface (HTS-SLIPS) is developed by one-step electrodeposition and lubricant infusion. The fractal cauliflower-like morphology with lubricant oil is conducive to forming an ultralow contact angle hysteresis of ≈1°. The 10-d real-world boiling trial indicates that by replacing the uncoated surface with HTS-SLIPS, the reduction in scale mass is greater than 200% because of the low surface free energy (4.3 mJ m-2 ) and outstanding smoothness (Ra  = 41 ± 8 nm) of HTS-SLIPS. Thanks to the scale retardation, the bubble departure frequency of HTS-SLIPS is eightfold higher than that of uncoated surfaces, signifying superior heat transfer efficiency. In these demonstrations, HTS-SLIPS coated spiral tube exhibits better flowability and lower pressure drop than the uncoated one. In addition, favorable compatibility between HTS-SLIPS and mechanical vibration is experimentally verified to strengthen the descaling of SLIPS synergistically. It is anticipated that the simple and scalable coating fabrication approach will be applicable in numerous industrial high-temperature processes where scale formation is encountered.

Keywords: scale; scale resistant; high temperature; hts slips; temperature scale

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.