LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Near-Infrared PbS Quantum Dot Solar Cells Employing Hydrogenated In2 O3 Transparent Electrode.

Photo from wikipedia

Infrared solar cells are regarded as candidates for expanding the solar spectrum of c-Si cells, and the window electrodes are usually transparent conductive oxide (TCO) such as widely used indium… Click to show full abstract

Infrared solar cells are regarded as candidates for expanding the solar spectrum of c-Si cells, and the window electrodes are usually transparent conductive oxide (TCO) such as widely used indium tin oxide material. However, due to the low transmittance of the TCO in the near-infrared region, most near-infrared light cannot penetrate the electrode and be absorbed by the active layer. Here, the propose a simple procedure to fabricate the window materials with high near-infrared transmittance and high electrical conductivity, namely the hydrogen-doped indium oxide (IHO) films prepared by room temperature magnetron sputtering. The low-temperature annealed IHO conductive electrodes exhibit high mobility of 98 cm2 V-1 s-1 and high infrared transmittance of 85.2% at 1300 nm, which endows the lead quantum dot infrared solar cell with an improved short-circuit current density of 37.2 mA cm-2 and external quantum efficiency of 70.22% at 1280 nm. The proposed preparation process is simple and compatible with existing production lines, which gifts the IHO transparent conductive film great potential in broad applications that simultaneously require high infrared transmittance and high conductivity.

Keywords: electrode; quantum; transmittance; solar cells; near infrared; quantum dot

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.