LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Step Synthesis of Dynamically Shaped Stiff Nanorods Using Soft Silicone Materials to Control Water Repulsion and Collection.

Photo by a2eorigins from unsplash

One-dimensional silicone nanostructures, such as filaments, wires, and tubes, have attracted significant attention, owing to their remarkable application capabilities in a large range of material and surface science. However, the… Click to show full abstract

One-dimensional silicone nanostructures, such as filaments, wires, and tubes, have attracted significant attention, owing to their remarkable application capabilities in a large range of material and surface science. However, the soft mechanical properties of silicone cause vulnerability and irregularity in the synthesized structures, which limits their applications. Herein, a simple, solvent-free, and efficient dynamic Droplet Assisted Growth and Shaping (d-DAGS) strategy is proposed for the one-step synthesis and in situ control of the shape of silicone nanostructures. The special designed bamboo-shaped silicone nanorods (SNRs) that are produced by the repetitive dynamic regulation of growth conditions, concomitant with the periodic purging and injection of precursors, exhibit highly-regular and tunable structure with a specific number of segments, indicating that they can be tailor-made according to the requirements of various properties. The enhanced mechanical stiffness and chemical durability strongly support their excellent performances in water-resistance under both static and dynamic wetting conditions. The SNRs significantly promote buoyancy and self-cleaning properties; and exhibit very high water-harvesting efficiency compared with existing designs. Notably, the well-structured ultra-long rods with an ultrahigh aspect ratio (≈176) can also be fabricated by the d-DAGS method, and they can remain standing straight upwards and regular, even though they consist of flexible silicone.

Keywords: water; one step; step synthesis; silicone

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.