LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Crystallinity of Covalent Organic Frameworks Formed Under Physical Confinement by Exfoliated Graphene.

Photo by jupp from unsplash

The polymerization of 1,4-benzenediboronic acid (BDBA) on mica to form a covalent organic framework (COF-1) reveals a dramatic increase in crystallinity when physically confined by exfoliated graphene. COF-1 domains formed… Click to show full abstract

The polymerization of 1,4-benzenediboronic acid (BDBA) on mica to form a covalent organic framework (COF-1) reveals a dramatic increase in crystallinity when physically confined by exfoliated graphene. COF-1 domains formed under graphene confinement are highly geometric in shape and on the order of square micrometers in size, while outside of the exfoliated flakes, the COF-1 does not exhibit long-range mesoscale structural order, according to atomic force microscopy imaging. Micro-Fourier transform infrared spectroscopy confirms the presence of COF-1 both outside and underneath the exfoliated graphene flakes, and density functional theory calculations predict that higher mobility and self-assembly are not causes of this higher degree of crystallinity for the confined COF-1 domains. The most likely origin of the confined COF-1's substantial increase in crystallinity is from enhanced dynamic covalent crystallization due to the water confined beneath the graphene flake.

Keywords: exfoliated graphene; cof; covalent organic; confinement; crystallinity

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.