LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superhydrophobic 3D-Assembled Metallic Nanoparticles for Trace Chemical Enrichment in SERS Sensing.

Photo from wikipedia

The performance of surface-enhanced Raman spectroscopy (SERS) is determined by the interaction between highly diluted analytes and boosted localized electromagnetic fields in nanovolumes. Although superhydrophobic surfaces are developed for analyte… Click to show full abstract

The performance of surface-enhanced Raman spectroscopy (SERS) is determined by the interaction between highly diluted analytes and boosted localized electromagnetic fields in nanovolumes. Although superhydrophobic surfaces are developed for analyte enrichment, i.e., to concentrate and transfer analytes toward a specific position, it is still challenging to realize reproducible, uniform, and sensitive superhydrophobic SERS substrates over large scales, representing a major barrier for practical sensing applications. To overcome this challenge, a superhydrophobic SERS chip that combines 3D-assembled gold nanoparticles on nanoporous substrates is proposed, for a strong localized field, with superhydrophobic surface treatment for analyte enrichment. Intriguingly, by concentrating droplets in the volume of 40 µL, the sensitivity of 1 nm is demonstrated using 1,2-bis(4-pyridyl)-ethylene molecules. In addition, this unique chip demonstrates a relative standard deviation (RSD) of 2.2% in chip-to-chip reproducibility for detection of fentanyl at 1 µg mL-1 concentration, revealing its potential for quantitative sensing of chemicals and drugs. Furthermore, the trace analysis of fentanyl and fentanyl-heroin mixture in human saliva is realized after a simple pretreatment process. This superhydrophobic chip paves the way toward on-site and real-time drug sensing to tackle many societal issues like drug abuse and the opioid crisis.

Keywords: assembled metallic; enrichment; superhydrophobic assembled; chip; metallic nanoparticles

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.