LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional Epoxy-Based Electronic Packaging Material MDCF@LDH/EP for Electromagnetic Wave Absorption, Thermal Management, and Flame Retardancy.

Photo by topdata from unsplash

The sharp reduction in size and increase in power density of next-generation integrated circuits lead to electromagnetic interference and heat failure being a key roadblock for their widespread applications in… Click to show full abstract

The sharp reduction in size and increase in power density of next-generation integrated circuits lead to electromagnetic interference and heat failure being a key roadblock for their widespread applications in polymer-based electronic packaging materials. This work demonstrates a multifunctional epoxy-based composite (MDCF@LDH/EP) with high electromagnetic wave (EMW) absorption, thermal conductivity, and flame retardancy performance. In which, the synergistic effect of porous structure and heterointerface promotes the multiple reflection and absorption, and dielectric loss of EMW. A low reflection loss of -57.77 dB, and an effective absorption bandwidth of 7.20 GHz are achieved under the fillings of only 10 wt%. Meanwhile, a 241.4% enhanced thermal conductivity of EP is due to the high continuous 3D melamine-derived carbon foams (MDCF), which provides a broad path for the transport of phonons. In addition, MDCF@LDH/EP composite exhibits high thermal stability and flame retardancy, thanks to the physical barrier effect of MDCF@LDH combined with the high temperature cooling properties of NiAl-LDH-CO3 2- . Compared with pure epoxy resin, the peak heat release rate and the total heat release rate are reduced by 19.4% and 30.7%, respectively. Such an excellent comprehensive performance enables MDCF@LDH/EP to a promising electronic packaging material.

Keywords: mdcf ldh; electronic packaging; mdcf; absorption; flame retardancy

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.