LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Engineering of Ni wires and Rapid Growth Strategy of Ni-MOF Synergistically Contribute to High-Performance Fiber-Shaped Aqueous Battery.

Photo from wikipedia

The fiber-shaped aqueous battery (FSAB) has the advantages of flexibility, portability and safety making it promising for energy storage applications. In particular, FSABs based on metal wire current collectors with… Click to show full abstract

The fiber-shaped aqueous battery (FSAB) has the advantages of flexibility, portability and safety making it promising for energy storage applications. In particular, FSABs based on metal wire current collectors with good electrical conductivity can provide excellent energy storage properties. However, the low adhesion caused by the smooth surface of the metal wire and the unavailability of many electrochemically active materials for use in FSAB is holding back their development. Herein, a substrate is effectively constructed for the strongly applicable growth of the active material via a Ni wire etching strategy. In addition, core-shell structured nanorod arrays consisting of NiCo2 O4 and Ni-metal-organic frameworks (MOFs) are constructed, where Ni-MOF can be obtained rapidly via β-Ni(OH)2 intermediates. The NCO/NM-15 electrode obtained by structural regulation exhibits high capacity and outstanding cycling stability. De calculations further demonstrate that the formation of NiCo2 O4 and Ni-MOF heterostructures results in a significant increase in the Fermi level leading to more active internal electrons, which facilitates electron transfer in electrochemical reactions. An assembled FSAB device can provide an energy density of 158.33 µWh cm-2 and the devices can provide power for a calculator and an electronic watch screen, demonstrating a wide application prospect in the field of energy storage.

Keywords: fiber shaped; shaped aqueous; aqueous battery; energy

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.