LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Regulation of Solvation Shell and Oriented Deposition toward a Highly Reversible Fe Anode for All-Iron Flow Batteries.

Photo from wikipedia

Developing low-cost all-iron hybrid redox flow batteries (RFBs) presents a practical alternative to the high-cost all-vanadium RFBs and is deemed vital for grid-scale energy storage applications. However, the intrinsically poor… Click to show full abstract

Developing low-cost all-iron hybrid redox flow batteries (RFBs) presents a practical alternative to the high-cost all-vanadium RFBs and is deemed vital for grid-scale energy storage applications. However, the intrinsically poor Fe anode reversibility associated with the deposition and dissolution of metallic iron greatly limits the cycling performance and long-term stability of all-iron hybrid RFBs. Herein, a highly reversible and dendrite-free Fe anode is reported for all-iron RFBs through regulation of polar solvent dimethyl sulfoxide (DMSO) on FeCl2 anolyte, which simultaneously reshapes Fe2+ solvation structure and induces controllable oriented Fe deposition. Combining both experimental and theoretical analyses, the polar DMSO additives prove effective in replacing H2 O molecule from the primary solvation shell of Fe2+ cation via the Fe2+ -O (DMSO) bond and meanwhile induces a fine-grained Fe nucleation on the preferred Fe (110) plane, which are responsible for the minimized hydrogen evolution and dendrite-free Fe deposition that significantly enhance Fe anode reversibility. The all-iron RFB based on the proposed FeCl2 -DMSO anolyte demonstrates an excellent combination of peak power density of 134 mW cm-2 , high energy efficiency of 75% at 30 mA cm-2 , and high capacity retention of 98.6% over 200 cycles, which presents the best performance of all-iron RFBs among previously reported research.

Keywords: highly reversible; iron; deposition; solvation; flow batteries; anode

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.