LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Activation Applied to Perovskite Titanate Fibers to Yield Supported Alloy Nanoparticles for Electrocatalytic Application.

Photo by terri_bleeker from unsplash

Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The… Click to show full abstract

Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The B-site co-doped perovskite fibers display a high degree of exsolution, decorated with NiCo or Ni3 Fe bi-metallic nanoparticles with average diameter about 29 and 35 nm, respectively. The perovskite fibers are utilized as cathode materials in pure CO2 electrolysis cells due to their redox stability in the CO/CO2 atmosphere. After in situ electrochemical switching, the nanoparticles exsolved from the perovskite fiber demonstrate an enhanced performance in pure CO2 electrolysis. At 900 °C, the current density of solid oxide electrolysis cell (SOEC) with 200 µm YSZ electrolyte supported NiFe doped perovskite fiber anode reaches 0.75 Acm-2 at 1.6 V superior to the NiCo doped perovskite fiber anode (about 1.5 times) in pure CO2 . According to DFT calculations (PBE-D3 level) the superior CO2 conversion on NiFe compared to NiCo bi-metallic species is related to an enhanced driving force for C-O cleavage under formation of CO chemisorbed on the nanoparticle and a reduced binding energy of CO required to release this product.

Keywords: doped perovskite; pure co2; perovskite fiber; perovskite fibers; co2; metallic nanoparticles

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.