LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphological Transformation and In Situ Polymerization of Caspase-3 Responsive Diacetylene-Containing Lipidated Peptide Amphiphile for Self-Amplified Cooperative Antitumor Therapy.

Photo by jareddrice from unsplash

In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to… Click to show full abstract

In order to artificially regulate cell behaviors, intracellular polymerization as an emerging chemical technique has attracted much attention. Yet, it is still a challenge to achieve effective intracellular polymerization to conquer tumors in the complex cellular environment. Herein, this work develops a tumor-targeting and caspase-3 responsive nanoparticle composed of a diacetylene-containing lipidated peptide amphiphile and mitochondria-targeting photosensitizer (C3), which undergoes nanoparticle-to-nanofiber transformation and efficient in situ polymerization triggered by photodynamic treatment and activation of caspase-3. The locational nanofibers on the mitochondria membranes lead to mitochondrial reactive oxygen species (mtROS) burst and self-amplified circulation, offering persistent high oxidative stress to induce cell apoptosis. This study provides a strategy for greatly enhanced antitumor therapeutic efficacy through mtROS burst and self-amplified circulation induced by intracellular transformation and in situ polymerization.

Keywords: self amplified; situ polymerization; caspase; transformation; polymerization

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.