The fields of electronic skin, man-machine interaction, and health monitoring require flexible pressure sensors with great sensitivity. However, most microstructure designs utilized to fabricate high-performance pressure sensors require complex preparation… Click to show full abstract
The fields of electronic skin, man-machine interaction, and health monitoring require flexible pressure sensors with great sensitivity. However, most microstructure designs utilized to fabricate high-performance pressure sensors require complex preparation processes. Here, MXene/polyaniline (PANI) foam with 3D porous structure is achieved by using a steam-induced foaming method. Based on the structure, a flexible piezoresistive sensor is fabricated. It exhibits high sensitivity (690.91 kPa-1 ), rapid response, and recovery times (106/95 ms) and outstanding fatigue resistance properties (10 000 cycles). The MXene/PANI foam-based pressure sensor can swiftly detect minor pressure and be further used for human activity and health monitoring.
               
Click one of the above tabs to view related content.