LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional Hollow MnO2 @Porphyrin@Bromelain Nanoplatform for Enhanced Photodynamic Therapy.

Photo by finnnyc from unsplash

Photodynamic therapy (PDT) has been showing great potential in cancer treatment. However, the efficacy of PDT is always limited by the intrinsic hypoxic tumor microenvironment (TME) and the low accumulation… Click to show full abstract

Photodynamic therapy (PDT) has been showing great potential in cancer treatment. However, the efficacy of PDT is always limited by the intrinsic hypoxic tumor microenvironment (TME) and the low accumulation efficiency of photosensitizers in tumors. To address the issue, a multifunctional hollow multilayer nanoplatform (H-MnO2 @TPyP@Bro) comprising manganese dioxide, porphyrin (TPyP) and bromelain (Bro), is developed for enhanced photodynamic therapy. MnO2 catalyzes the intracellular hydrogen peroxide (H2 O2 ) to produce oxygen (O2 ), reversing the hypoxic TME in vivo. The generated O2 is converted into singlet oxygen (1 O2 ) by the TPyP shell under near-infrared light, which can inhibit tumor proliferation. Meanwhile, the Bro can digest collagen in the extracellular matrix around the tumor, and can promote the accumulation of H-MnO2 @TPyP@Bro in the deeper tumor tissue, further improving the therapeutic effect of PDT. In addition, MnO2 can react with the overexpressed glutathione in TME to release Mn2+ . Consequently, Mn2+ not only induces chemo-dynamic therapy based on Fenton reaction by converting H2 O2 into hydroxyl radicals, but also activates the Mn2+ -based magnetic resonance imaging. Therefore, the developed H-MnO2 @TPyP@Bro nanoplatform can effectively modulate the unfavorable TME and overcome the limitations of conventional PDT for cancer diagnostic and therapeutic.

Keywords: mno2; tpyp; therapy; multifunctional hollow; nanoplatform; photodynamic therapy

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.