LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Assembly of Magnetic Nanochains in an Intrinsic Magnetic Dipole Force-Dominated Regime.

Photo from wikipedia

Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro- and nanoscale systems; however, to date, large-scale fabrication of these nanochains is limited by the need… Click to show full abstract

Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro- and nanoscale systems; however, to date, large-scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self-assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole-dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole-dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096 m) that dictates the degree of dipole interaction is examined-a property dependent on particle size and inter-particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self-assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole-induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.

Keywords: force; magnetic dipole; intrinsic magnetic; self assembly

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.