LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Realization of a 594 Wh kg-1 Lithium-Metal Battery Using a Lithium-Free V2 O5 Cathode with Enhanced Performances by Nanoarchitecturing.

Photo from wikipedia

To realize a high-energy lithium metal battery (LMB) using a high-capacity Li-free cathode, in this work, nanoplate-stacked V2 O5 with dominantly exposed (010) facets and a relatively short [010] length… Click to show full abstract

To realize a high-energy lithium metal battery (LMB) using a high-capacity Li-free cathode, in this work, nanoplate-stacked V2 O5 with dominantly exposed (010) facets and a relatively short [010] length is proposed to be used as a cathode. The V2 O5 nanostructure can be fabricated via a modified hydrothermal method, including a Li+ crystallization inhibitor, followed by heat treatment. In particular, the enlargement of the favorable Li+ diffusion pathway in the [010] direction and the formation of a robust hierarchical nanoplate-stacked structure in the modified V2 O5 improves the electrochemical kinetics and stability; as a result, the nanoplate-stacked V2 O5 electrode exhibits a higher capacity and rate performance (258 mAh g-1 at 50 mA g-1 [0.17 C], 140 mAh g-1 at 1 A g-1 [3.4 C]) and cycling capability (79% capacity retention after 100 cycles at 0.5 C) compared to the previously reported V2 O5 nanobelt electrode. Notably, the LMB composed of Li//nanoplate-stacked V2 O5 full-cells shows high specific energy densities of 594.1 and 296.2 Wh kg-1 at 0.1 and 1.0 C, respectively, and a high Coulombic efficiency of 99.6% during 50 cycles.

Keywords: metal battery; free cathode; cathode; nanoplate stacked; lithium metal

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.