LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Emerging Development of Multicolor Carbon Dots.

Photo from wikipedia

As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique… Click to show full abstract

As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique electronic and physicochemical properties. The multicolor emission characteristics of carbon dots (CDs) obviously depend on the carbon source precursor, reaction conditions, and reaction environment, which directly or indirectly determines the multicolor emission characteristics of CDs. Therefore, this review is the first systematic classification and summary of multiple regulation methods of synthetic MCDs and reviews the recent research progress in the synthesis of MCDs from a variety of precursor materials such as aromatic molecules, small organic molecules, and natural biomass, focusing on how different regulation methods produce corresponding MCDs. This review also introduces the innovative applications of MCDs in the fields of biological imaging, light-emitting diodes (LEDs), sensing, and anti-counterfeiting due to their excellent PL properties. It is hoped that by selecting appropriate adjustment methods, this review can inspire and guide the future research on the design of tailored MCDs, and provide corresponding help for the development of multifunctional MCDs.

Keywords: carbon; development; multicolor carbon; mcds; carbon dots

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.