LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructure Engineering of Sn-Based Catalysts for Efficient Electrochemical CO2 Reduction.

Photo from wikipedia

Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2… Click to show full abstract

Excessive anthropogenic CO2 emission has caused a series of ecological and environmental issues, which threatens mankind's sustainable development. Mimicking the natural photosynthesis process (i.e., artificial photosynthesis) by electrochemically converting CO2 into value-added products is a promising way to alleviate CO2 emission and relieve the dependence on fossil fuels. Recently, Sn-based catalysts have attracted increasing research attentions due to the merits of low price, abundance, non-toxicity, and environmental benignancy. In this review, the paradigm of nanostructure engineering for efficient electrochemical CO2 reduction (ECO2 R) on Sn-based catalysts is systematically summarized. First, the nanostructure engineering of size, composition, atomic structure, morphology, defect, surficial modification, catalyst/substrate interface, and single-atom structure, are systematically discussed. The influence of nanostructure engineering on the electronic structure and adsorption property of intermediates, as well as the performance of Sn-based catalysts for ECO2 R are highlighted. Second, the potential chemical state changes and the role of surface hydroxides on Sn-based catalysts during ECO2 R are introduced. Third, the challenges and opportunities of Sn-based catalysts for ECO2 R are proposed. It is expected that this review inspires the further development of highly efficient Sn-based catalysts, meanwhile offer protocols for the investigation of Sn-based catalysts.

Keywords: based catalysts; co2; efficient electrochemical; nanostructure engineering

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.