LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tumor Antigen Loaded Nanovaccine Induced NIR-Activated Inflammation for Enhanced Antigen Presentation During Immunotherapy of Tumors.

Photo from wikipedia

Although anticancer vaccines have achieved certain effects in early clinical practice, T cell immunity as the most common responsive pattern of anticancer vaccines is still limited by unsatisfied tumor recognition… Click to show full abstract

Although anticancer vaccines have achieved certain effects in early clinical practice, T cell immunity as the most common responsive pattern of anticancer vaccines is still limited by unsatisfied tumor recognition and inhibition efficiency. As the critical step of T cell immunity, uptake and presentation of specific antigen by antigen-presenting cells (APC) can be activated by inflammation for enhancing the response of T cells to the antigen source. Here, a hybrid nanovaccine named PTh/MnO2 @M activated with a near-infrared ray (NIR) is prepared by coating an autologous tumor cell membrane on the surface of a polythiophene/MnO2 composite core. The photoelectrical material polythiophene can produce local microinflammation under NIR radiation and activate specific T cell antitumor immunity by promoting APC maturation and autologous tumor antigens presentation. Moreover, the synthesized nanovaccine PTh/MnO2 @M is shown to induce a significant antitumor immune response, effectively inhibit the progression of melanoma in mice, and significantly prolong the survival time of mice in vivo. This strategy aims to enhance T-cell immune responses by promoting antigen presentation, leading to effective and specific cancer therapy.

Keywords: cell; presentation; antigen presentation; tumor; antigen; activated inflammation

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.