LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-Induced Phase Transition and Patterning of hBN-Encapsulated Mo Te2.

Photo from wikipedia

Transition metal dichalcogenides exhibit phase transitions through atomic migration when triggered by various stimuli, such as strain, doping, and annealing. However, since atomically thin 2D materials are easily damaged and… Click to show full abstract

Transition metal dichalcogenides exhibit phase transitions through atomic migration when triggered by various stimuli, such as strain, doping, and annealing. However, since atomically thin 2D materials are easily damaged and evaporated from these strategies, studies on the crystal structure and composition of transformed 2D phases are limited. Here, the phase and composition change behavior of laser-irradiated molybdenum ditelluride (MoTe2 ) in various stacked geometry are investigated, and the stable laser-induced phase patterning in hexagonal boron nitride (hBN)-encapsulated MoTe2 is demonstrated. When air-exposed or single-side passivated 2H-MoTe2 are irradiated by a laser, MoTe2 is transformed into Te or Mo3 Te4 due to the highly accumulated heat and atomic evaporation. Conversely, hBN-encapsulated 2H-MoTe2 transformed into a 1T' phase without evaporation or structural degradation, enabling stable phase transitions in desired regions. The laser-induced phase transition shows layer number dependence; thinner MoTe2 has a higher phase transition temperature. From the stable phase patterning method, the low contact resistivity of 1.13 kΩ µm in 2H-MoTe2 field-effect transistors with 1T' contacts from the seamless heterophase junction geometry is achieved. This study paves an effective way to fabricate monolithic 2D electronic devices with laterally stitched phases and provides insights into phase and compositional changes in 2D materials.

Keywords: transition; geometry; phase; induced phase; laser induced

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.