LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of Ultrathin Topological Insulator β-Ag2 Te and Ag2 Te/WSe2 -Based High-Performance Photodetector.

Photo by framemily from unsplash

β-Ag2 Te has attracted considerable attention in the application of electronics and optoelectronics due to its narrow bandgap, high mobility, and topological insulator properties. However, it remains a significant challenge… Click to show full abstract

β-Ag2 Te has attracted considerable attention in the application of electronics and optoelectronics due to its narrow bandgap, high mobility, and topological insulator properties. However, it remains a significant challenge to synthesize 2D Ag2 Te because of the non-layered structure of Ag2 Te. Herein, the synthesis of large-size, ultrathin single crystal topological insulator 2D Ag2 Te via the van der Waals epitaxial method for the first time is reported. The 2D Ag2 Te crystal exhibits p-type conduction behavior with high carrier mobility of 3336 cm2 V-1 s-1 at room temperature. Taking advantage of the high mobility and perfect electron structure of Ag2 Te, the Ag2 Te/WSe2 heterojunctions are fabricated via mechanical stacking and show an ultrahigh rectification ratio of 2 × 105 . Ag2 Te/WSe2 photodetector also exhibits self-driven properties with a fast response speed (40 µs/60 µs) in the near-infrared region. High responsivity (219 mA W-1 ) and light ON/OFF ratio of 6 × 105 are obtained under the photovoltaic mode. The overall performance of the Ag2 Te/WSe2 photodetector is significantly competitive among all reported 2D photodetectors. These results indicate that 2D Ag2 Te is a promising candidate for future electronic and optoelectronic applications.

Keywords: topological insulator; photodetector; ag2 wse2; ag2

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.