LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pairing d-Band Center of Metal Sites with π-Orbital of Alkynes for Efficient Electrocatalytic Alkyne Semi-Hydrogenation.

Photo from wikipedia

Electrocatalytic alkyne semi-hydrogenation has attracted ever-growing attention as a promising alternative to traditional thermocatalytic hydrogenation. However, the correlation between the structure of active sites and electrocatalytic performance still remains elusive.… Click to show full abstract

Electrocatalytic alkyne semi-hydrogenation has attracted ever-growing attention as a promising alternative to traditional thermocatalytic hydrogenation. However, the correlation between the structure of active sites and electrocatalytic performance still remains elusive. Herein, the energy difference (∆ε) between the d-band center of metal sites and π orbital of alkynes as a key descriptor for correlating the intrinsic electrocatalytic activity is reported. With two-dimensional conductive metal organic frameworks as the model electrocatalysts, theoretical and experimental investigations reveal that the decreased ∆ε induces the strengthened d-π orbitals interaction, which thus enhances acetylene π-adsorption and accelerates subsequent hydrogenation kinetics. As a result, Cu3 (HITP)2 featuring the smallest ∆ε (0.10 eV) delivers the highest turnover frequency of 0.36 s-1 , which is about 124 times higher than 2.9 × 10-3  s-1 for Co3 (HITP)2 with the largest ∆ε of 2.71 eV. Meanwhile, Cu3 (HITP)2 presents a high ethylene partial current density of -124 mA cm-2 and a large ethylene Faradaic efficiency of 99.3% at -0.9 V versus RHE. This work will spark the rapid exploration of high-activity alkyne semi-hydrogenation catalysts.

Keywords: hydrogenation; semi hydrogenation; alkyne semi; electrocatalytic alkyne; band center; metal

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.