LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Freestanding Block Copolymer Membranes with Tunable Pore Sizes Promoted by Subnanometer Nanowires.

Block copolymers (BCPs) have enduring appeal for its intriguing assembly behaviors. Nevertheless, the unsatisfactory mechanical properties of BCPs make it a problem to fabricate freestanding membranes and hindered practical applications.… Click to show full abstract

Block copolymers (BCPs) have enduring appeal for its intriguing assembly behaviors. Nevertheless, the unsatisfactory mechanical properties of BCPs make it a problem to fabricate freestanding membranes and hindered practical applications. Herein, a freestanding membrane with tunable pore size is prepared simply by co-assembly of BCPs and subnanometer nanowires (SNWs), combining the abundant function of BCPs and prominent mechanical properties of SNWs. Benefited from synergy of the components and the hierarchical structure, the tensile strength of composite membrane is promoted by two orders of magnitude compared to that of BCPs. With the columnar pores aligning vertically to surfaces and the pore size regulated by processing conditions, the membranes exhibit precise size-selected effect in ultrafiltration of Au nanoparticles (Au NPs) and can distinct NPs with diameter difference as tiny as 5 nm, demonstrating the promising prospect in separation technology and even widespread fields.

Keywords: tunable pore; freestanding block; subnanometer nanowires

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.