LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailoring Spin State of Perovskite Oxides by Fluorine Atom Doping for Efficient Oxygen Electrocatalysis.

Photo by michael75 from unsplash

Promoting the initially deficient but economical catalysts to high-performing competitors is important for developing superior catalysts. Unlike traditional nano-morphology construction methods, this work focuses on intrinsic catalytic activity enhancement via… Click to show full abstract

Promoting the initially deficient but economical catalysts to high-performing competitors is important for developing superior catalysts. Unlike traditional nano-morphology construction methods, this work focuses on intrinsic catalytic activity enhancement via heteroatom doping strategies to induce lattice distortion and optimize spin-dependent orbital interaction to alter charge transfer between catalysts and reactants. Experimentally, a series of different concentrations of fluorine-doped lanthanum cobaltate (Fx -LaCoO3 ) exhibiting excellent electrocatalytic activity is synthesized, including a low overpotential of 390 mV at j = 10 mA cm-2 for OER and a large half-wave potential of 0.68 V for ORR. Meanwhile, the assembled rechargeable Zn-air batteries deliver an excellent performance with a large specific capacity of 811 mAh/gZn under 10 mA cm-2 and stability of charge/recharge (120 h). Theoretically, taking advantage of density functional theory calculations, it is found that the prominent OER/ORR performance arises from the spin state transition of Co3+ (Low spin state (LS, t2g 6 eg 0 ) → Intermediate spin state (IS, t2g 5 eg 1 ) and the mediated d-band center upshift by F atom incorporation. This work establishes a novel avenue for designing superior electrocatalysts in perovskite-based oxides by regulating spin states.

Keywords: oxides fluorine; state; perovskite oxides; state perovskite; spin state; tailoring spin

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.