LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dendritic Plasmonic CuPt Alloys for Closed-Loop Multimode Cancer Therapy with Remarkably Enhanced Efficacy.

Photo by finnnyc from unsplash

The outcome of laser-triggered plasmons-induced phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is significantly limited by the hypoxic tumor microenvironment and the upregulation of heat shock proteins (HSPs)… Click to show full abstract

The outcome of laser-triggered plasmons-induced phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is significantly limited by the hypoxic tumor microenvironment and the upregulation of heat shock proteins (HSPs) in response to heat stress. Mitochondria, the biological battery of cells, can serve as an important breakthrough to overcome these obstacles. Herein, dendritic triangular pyramidal plasmonic CuPt alloys loaded with heat-sensitive NO donor N, N'-di-sec-butyl-N, N'-dinitroso-1,4-phenylenediamine (BNN) is developed. Under 808 nm laser irradiation, plasmonic CuPt can generate superoxide anion free radicals (·O2 - ) and heat simultaneously. The heat generated can then trigger the release of NO gas, which not only enables gas therapy but also damages the mitochondrial respiratory chain. Impaired mitochondrial respiration leads to reduced oxygen consumption and insufficient intracellular ATP supply, which effectively alleviates tumor hypoxia and undermines the synthesis of HSPs, in turn boosting plasmonic CuPt-based PDT and mild PTT. Additionally, the generated NO and ·O2 - can react to form more cytotoxic peroxynitrite (ONOO- ). This work describes a plasmonic CuPt@BNN (CPB) triggered closed-loop NO gas, free radicals, and mild photothermal therapy strategy that is highly effective at reciprocally promoting antitumor outcomes.

Keywords: cupt alloys; plasmonic cupt; therapy; heat; closed loop

Journal Title: Small
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.