LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistically Accelerating Adsorption-Electrocataysis of Sulfur Species via Interfacial Built-In Electric Field of SnS2 -MXene Mott-Schottky Heterojunction in Li-S Batteries.

Photo by r2dev2 from unsplash

Developing efficient heterojunction electrocatalysts and uncovering their atomic-level interfacial mechanism in promoting sulfur-species adsorption-electrocatalysis are interesting yet challenging in lithium-sulfur batteries (LSBs). Here, multifunctional SnS2 -MXene Mott-Schottky heterojunctions with interfacial… Click to show full abstract

Developing efficient heterojunction electrocatalysts and uncovering their atomic-level interfacial mechanism in promoting sulfur-species adsorption-electrocatalysis are interesting yet challenging in lithium-sulfur batteries (LSBs). Here, multifunctional SnS2 -MXene Mott-Schottky heterojunctions with interfacial built-in electric field (BIEF) are developed, as a model to decipher their BIEF effect for accelerating synergistic adsorption-electrocatalysis of bidirectional sulfur conversion. Theoretical and experimental analysis confirm that because Ti atoms in MXene easily lost electrons, whereas S atoms in SnS2 easily gain electrons, and under Mott-Schottky influence, SnS2 -MXene heterojunction forms the spontaneous BIEF, leading to the electronic flow from MXene to SnS2 , so SnS2 surface easily bonds with more lithium polysulfides. Moreover, the hetero-interface quickly propels abundant Li+ /electron transfer, so greatly lowering Li2 S nucleation/decomposition barrier, promoting bidirectional sulfur conversion. Therefore, S/SnS2 -MXene cathode displays a high reversible capacity (1,188.5 mAh g-1 at 0.2 C) and a stable long-life span with 500 cycles (≈82.7% retention at 1.0 C). Importantly, the thick sulfur cathode (sulfur loading: 8.0 mg cm-2 ) presents a large areal capacity of 7.35 mAh cm-2 at lean electrolyte of 5.0 µL mgs -1 . This work verifies the substantive mechanism that how BIEF optimizes the catalytic performance of heterojunctions and provides an effective strategy for deigning efficient bidirectional Li-S catalysts in LSBs.

Keywords: sns2 mxene; heterojunction; sulfur; mott schottky; mxene

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.