LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Urchin-Like Structured MoO2 /Mo3 P/Mo2 C Triple-Interface Heterojunction Encapsulated within Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Reaction.

Photo from wikipedia

The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method… Click to show full abstract

The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method is developed to construct MoO2 /Mo3 P/Mo2 C triple-interface heterojunction encapsulated into nitrogen-doped carbon with urchin-like structure using ammonium phosphomolybdate and dopamine. Furthermore, the mass ratio of dopamine and ammonium phosphomolybdate is found critical for the successful formation of such triple-interface heterojunction. Theoretical calculation results demonstrate that such triple-interface heterojunctions possess thermodynamically favorable water dissociation Gibbs free energy (ΔGH2O ) of -1.28 eV and hydrogen adsorption Gibbs free energy (ΔGH* ) of -0.41 eV due to the synergistic effect of Mo2 C and Mo3 P as water dissociation site and H* adsorption/desorption sites during the HER process in comparison to the corresponding single components. Notably, the optimal heterostructures exhibit the highest HER activity with the low overpotential of 69 mV at the current density of 10 mA cm-2 and a small Tafel slope of 60.4 mV dec-1 as well as good long-term stability for 125 h. Such remarkable results have been theoretically and experimentally proven to be due to the synergistic effect between the unique heterostructures and the encapsulated nitrogen-doped carbon.

Keywords: nitrogen doped; interface heterojunction; interface; doped carbon; triple interface; mo3

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.