LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of MoOx Surficial Modification in Enhancing the OER Performance of Ru-Pyrochlore.

Photo by jordanmcdonald from unsplash

Pyrochlore ruthenate (Y2 Ru2 O7-δ ) is highlighted as a promising oxygen evolution reaction (OER) catalyst for water splitting in polymer electrolyte membrane electrolyzers. However, an efficient electronic modulation strategy… Click to show full abstract

Pyrochlore ruthenate (Y2 Ru2 O7-δ ) is highlighted as a promising oxygen evolution reaction (OER) catalyst for water splitting in polymer electrolyte membrane electrolyzers. However, an efficient electronic modulation strategy for Y2 Ru2 O7-δ is required to overcome its electrochemical inertness. Herein, a surface manipulation strategy involving implanting MoOx moieties on nano Y2 Ru2 O7-δ (Mo-YRO) using wet chemical peroxone method is demonstrated. In contrast to electronic structure regulation by intramolecular charge transfer (i.e., substitutional strategies), the heterogeneous Mo-O-Ru micro-interfaces facilitate efficient intermolecular electron transfer from [RuO6 ] to MoOx . This eliminates the bandgap by inducing Ru 4d delocalization and band alignment rearrangement. The MoOx modifiers also alleviate distortion of [RuO6 ] by shortening Ru-O bond and enlarging Ru-O-Ru bond angle. This electronic and geometric structure tailoring enhances the OER performance, showing a small overpotential of 240 mV at 10 mA cm-2 . Moreover, the electron-accepting MoOx moieties provide more electronegative surfaces, which serve as a protective "fence" to inhibit the dissolution of metal ions, thereby stabilizing the electrochemical activity. This study offers fresh insights into the design of new-based pyrochlore electrocatalysts, and also highlights the versatility of surface engineering as a way of optimizing electronic structure and catalytic performance of other related materials.

Keywords: moox surficial; oer performance; pyrochlore; role moox; surficial modification; performance

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.