LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charge Separation in BaTiO3 Nanocrystals: Spontaneous Polarization Versus Point Defect Chemistry.

The fate of photogenerated charges within ferroelectric metal oxides is key for photocatalytic applications. The authors study the contributions of i) tetragonal distortion, responsible for spontaneous polarization, and ii) point… Click to show full abstract

The fate of photogenerated charges within ferroelectric metal oxides is key for photocatalytic applications. The authors study the contributions of i) tetragonal distortion, responsible for spontaneous polarization, and ii) point defects, on charge separation and recombination within BaTiO3 (BTO) nanocrystals of cubic and tetragonal structure. Electron paramagnetic resonance (EPR) in combination with O2 photoadsorption experiments show that BTO nanocrystals annealed at 600 °C have a charge separation yield enhanced by a factor > 10 compared to TiO2 anatase nanocrystals of similar geometries. This demonstrates for the first time the beneficial effect of the BTO perovskite nanocrystal lattice on charge separation. Strikingly, charge separation is considerably hindered within BTO nanoparticles annealed ≥ 600 °C, due to the formation of Ba-O divacancies that act as charge recombination centers. The opposing interplay between tetragonal distortion and annealing-induced defect formation inside the lattice highlights the importance of defect engineering within perovskite nanoparticles.

Keywords: chemistry; spontaneous polarization; charge separation

Journal Title: Small
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.